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Abstract

The auto-tuning method for a strongly stable adaptive
control system design is proposed. The proposed methods
can place the stability index in the specified area and then,
overcome the problem of unstable series compensator that
appears in conventional adaptive pole placement control
system. The appropriate adaptive control system can be
derived by adjusting automatically the weight of a
performance criterion in optimal control by means of the
fuzzy inference on the basis of the stability index.
Furthermore, the transient characteristic is improved by
tuning the tracking model according to certain relation
between the performance weight in an optimal control
design, the settling time and the tracking model pole. In
addition, the numerical simulations are used to prove that
the proposed methods provide satisfied performance.

1 Introduction

The dynamic characteristics in many industrial controlled
systems often change in a wide range during actuation. For
example, the mechanical parameter on the motor control
system changes over a wide range. It is well known that the
adaptive control [1], [2], is very effective method for such
systems. By the way, when the system parameter changes
widely, a controller having unstable poles frequently
appears in an adaptive pole placement control system, even
if the closed-loop characteristic has been designed as a
stable system. However, the appearance of unstable
compensator is not desirable with respect to both stability
and reliability.

The unstable controller is used seldom, especially if the
plant itself is a stable system. Therefore, the appropriate
selection of a closed-loop pole is required in order to obtain

a stable controller over a full range of the parameter change.

However, selecting the closed-loop pole that ensures the
stability of a compensator under the condition of the
parameter change over a wide range is very difficult in the
pole placement control. Therefore, if the designer is able to
adjust the stable poles of a closed-loop system recursively
according to the change of the plant parameter, the
construction of a strongly stable system [3] is easily
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realized. Such research is an indispensable significant
theme to the development of an intelligent auto-tuning
technology. However, only few reports are published that
discussed the tuning method of both controller and
closed-loop pole according to the parameter change.

Recently, authors announced some effective design
methods [4], [5], that construct a strongly stable adaptive
pole placement system when the plant parameter greatly
changes. In this paper, the desired performance of both
transient response and manipulated variable can be
achieved by tuning the tracking model in consideration of
the relation between the performance weight in optimal
control design and the settling time. The main characteristic
of the proposed design method for strongly stable adaptive
control system is to evaluate the control system by
introducing a stability index, the relative stability of both
series compensator and closed-loop system. A stability
index is the evaluation that was introduced in the
coefficient diagram method [6], [7], it is also known as a
useful index in the case that a robust controller of low
dimension is derived in the control design.

The procedure of the proposed method is summarized as
follows. An optimal servo system [8] is recursively
designed to an estimated plant model. The pole placement
controller is automatically constructed by solving Bezout
identity on the basis of the characteristic polynomial of the
derived optimal servo. After the stability index of a series
compensator is examined, the weight in an optimal design
is appropriately updated by means of the fuzzy inference.

In other words, the proposed method automatically
adjusts the weight of an optimal servo system so that the
adaptive system can place the stability index of the series
compensator into the specified region. Consequently, this
method not only ensures the stability of both the closed-
loop system and the controller but also can achieve a fine
control performance.

2 Adaptive Pole Placement Control System

The proposed adaptive control system shown in Figure 1
does not introduce the pole-zeros cancellation because it is
really difficult to avoid the unstable zeros in the discrete
modeling of the practical plant.
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Figure 1: Block diagram of an adaptive control system.

2.1 Pole placement control system

The adaptive control system of this research is constructed
by means of the pole placementdesign with an integrator in
order to reject the stationary disturbance. The plant is
described by the following ARX model:

Alg (k) =g B(g Huk) +w(k) , (1)
AlgHY=1+aq " ++a,q", ()
B(q™)=by+bg" ++b,q", 3)

where w(k) is the white noise having zero mean value.
The reference signal is given by the following tracking
model:

A, (q ), (k) =q"'B,, (g u,, (k) “)
Am(qil)=1+amlq71 +'”_’—amlq71 ’ (5)
Bm (qil) = me + bmlq71 +oot bm1q71 . (6)

The regulation performance of a stable closed-loop system
is specified by the following polynomial:

D, (g )=1+d,q" ++d,,q" , nd<n+m+d (1)
In addition, the tracking performance ofa control system is
generally achieved by using prefilter T(¢™') that is either
the constant gain such as

T(q")=D,(1)/B() (8)
or the polynomial such as
T(¢™)=D,(a")/B) . ©)

Here, let us consider the difference described by
e(k+d)=D,(q ) y(k+d)=T(q")B(q ), (k+d). (10)
The variance of (10)represents the performance criterion:
J=E[e’(k+d)] . (11)
Then, the optimal input signal u(k) that minimizes J is
constructed by means of the following value:

T(q ), (k+d)=R(q™)y(k)
(1-¢7)S(qg™")
where S(¢™") and R(¢™') are given by the polynomials:
(13)
R(g ) =ry+ng " +- 49", (14)
Furthermore, S(¢™') and R(g™') can be derived by solving
Bezout identity (or Diophantin e equation):

D,(g)=(1-¢g"HA(g)S(g)+q B¢ HR(g™). (15)

u(k) = , (12)

ns

S(g)=1+s,q" ++s,q97", ns=m+d—1,

nr=mn.
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2.2 Recursive identification system

When the parameter of ARX model (1) is unknown or
greatly varied, the estimated value of a plant parameter is
substituted in the control system design. If the parameter
vector 6 and the regression vector ¢(k) constructed by
measurement data are defined as

eT={a1’a2a"’aan,boabla"',bm} (16)
and
@' (k) == y(k =1),=y(k = 2),--,=y(k = n),
uk—d)ulk-1-d),---,u(lk —m-d)} , (17)
respectively, then, the plant output is expressed by
y(k)y =" (k)6 +v(k) . (18)

Here, let us use the notation p(k|0) as the one-
step-ahead prediction value, then it is given by the linear
formula with respect to a parameter vector 6 as follows:

Wk [8)=[1- (g )ly(k)+B(g u(k)=9" (k)6 . (19)
The estimate model output is constructed according to

yu(k)=0@" (k)0(k) (20)
where the estimate vector of the parameter is defined by

6" (k) ={a,(k),a, (k),-,a, (k),

by (k),by(k),:--,b, (k)}. 2D

If the condition of signal to noise (S/N) ratio ofthe plant

described by ARX model is good, the least-squares

estimation is reliable and has few bias with respect to the

estimated value. Consequently, the recursive identification

based on least-squares method is described by means of the
following formulation:

parameter adjusting:

3 3 Pk =Do(k)

0(k)=0(k -1 k), 22

R T T s B
adaptive gain:

P(k) =;{P(k—1)— 4Ok Dol (pT(k)P(k_l)} . (23)

A (k) A(k)+ 2 (k) " (k)P(k =1) (k)

apriori error:

e(h)=y(k) =" (b(k-1) , (24)

where weighting sequences 4 (k) and A4,(k) in (23) are
0<X(k)<1 and 0< A, (k)< 2, respectively. The designer
can obtain other adaptive gain that has the typical
characteristic by selecting the appropriate values for 4,(k)
and A, (k).

2.3 Characteristic polynomial based on o ptimal servo
The procedure of a tuning algorithm was simplified by
applying the binomial coefficient polynomial in [4], as the
regulation specification. Type-1 optimal servo base on the

u(k)

Yr(k) 2(k) r(k) y(k)
+ + £

Figure 2: Type-1 optimal servo having one sample delay.



state-space approach is adaptively updated. The state-space
description, for example, a controllable canonical form
with respect to ARX model (1) is given by £:(4,B,C)
ignoring the disturbance w(k). Type-1 servo system with
computation time delay to the plant = : (4,8, C) as shown
in Figure 2 is constructed.

Here, a quadratic type performance criterion is defined as

J=SF OQER)+RV (K}, R>0,  (25)
k=0

where x(k) and v(k) represent the states and actuating
value for the extended deviation system, respectively, and
Q is a semi-positive definite matrix. Type-1 optimal servo
having one sample controller delay that minimizes a
performance index of (25) is given as follows:

Riccati equation:

P=Q+A4"PA-A"PB(R+B"PB)'B"P4, P>0, (26)

Optimal feed-back gain:
F=R+B"PB)'B"P4, (27)

Controller _parameters:
g=FB+1, (28)
[H,K|=[FA>,FAB + FB +11E ", (29)
|4-1 B 30)
cC 0

Furthermore, the state-space description of this optimal
servo system is expressed by

x(k+1) A4 B 0 [[x(k)] [0
u(k+1) |=|-H —g K ||u(k)|[+|0rk). (31)
zk+1)| |-C 0 1 ||lztkb)] |1

Therefore, characteristic polynomial D,(¢") of closed-
loop system is, for example, recursively calculated by
Faddeev’s algorithm from the system matrix of (31).

2.4 Auto-Tuning based on the stability index
The tuning method for the strongly stable pole placement
based on the stability index is discussed. The stability index
is introduced in order to evaluate the relative stability of the
control system. In the following »" -order characteristic
polynomial of the continuous-time transfer function:
p(s)=f,s"++ fis+f,, n=22, (32)
the stability indices y; are generally defined as follows:
V=S S S s =Llen=D). (33)
A series compensator [S(¢™')]™" is derived by solving (15),
according to the characteristic polynomial D,(¢™") that is
obtained with an optimal design of the previous section.

Next, in order to apply the stability indices y; to the
discrete-time series compensator [S(¢g™)]? , it is
transformed into the continuous-time transfer function
S.(s) by introducing the inverse bilinear transformation

q=Q2+Ts)/(2-Ts) , (34)
where T is the sampling period.

After this operation, the stability indices 7; in terms of
the denominator of continuous-time compensator S.(s) are
calculated. Furthermore, the simplest index y is selected
by means of the algebraic product (35) of stability indices
7: in order to evaluate the relation between the stability of
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controller and the performance of closed-loop system.

y=1 7 . (35)

i=1

This new index y can be related to the performance weight
R in the optimal servo. Furthermore, the index y is related
to each characteristic, whether open-loop, such as
gain-phase margin, or close-loop, such as settling time.
Appropriate auto-tuning of weight R based on the
resultant stability index y is achieved, by considering the
relations as mentioned above. Namely, the fuzzy inference
is introduced to adjust the performance weight R and this
stability index y is effectively used as the scaling factor.

In addition, in order to complete the defuzzification of
the inference result, the consequent of fuzzy inference is
executed using the gravity method of Mamdani as follows:

ug (k=1)={Zx,; u(x;)}/Zulx,), (36)
where x; is the nonfuzzy value, #(x;) is the value of the
membership function, and u, (k1) is the inference result.
In order to place the stability index y of the series
compensator S, (s) into the specified region, the weight R
of a performance criterion in the optimal servo system is
tuned by means of the following recursive formula:

R(k)= R(k—1)-108¢%D (37)

B(k=1)=c-u,(k=1), c:anyconsitant. (38)

3 Design Example

A 37 -order continuous-time plant is chosen as the
controlled process according to the following:

Ko’

n

(s+d)(s*> +2co0,5+0,%)

G(s)= (39)
where K and d are assigned to a constant value of 50 in
order to simplify the calculation similarly to [5]. The design
is performed according to the procedure described below.
The controllers for both of the continuous -time plant pairs,
2,(5=01lm,=60) and X (¢=04,w,=20), are designed.
The plant =, is a typical plant that has a fast response, and
also the plant =, is a typical plant, yet has a slower
response than the plant =, . First the plant =, described
above is transformed with a sampling time 7T =0.02[sec]
into the following discrete-time system (40), because the
digital controller is designed using the discrete-time model.

3 T T T T T
}—
2 B ’
¢ ,/stable
>~ controller
1 e ]
stable
controller |
(U~ _,,,-0”" N
1 II 1 i 1
10° 10" 102 10  10*  10° R106

Figure 3: Eachindex y of plants £, and =, to weight R .
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Figure 4: Each Hurwitz determinant H, to the weight R.

¢71(0.019318+ 0.056083 ¢! +1.0006x1072472)
1-19589¢ 7" +13115¢7> —0267144"

Due to the computation time delay, d should be increased
by 1, yielding d=2. Type-1 optimal servo controller
having one sample controller delay is calculated under the
condition that the weights of performance criterion of (25)
are Q= diag(100,100,100) and R = 5x10* .

When Riccati equation of (26) is first solved, a positive
definite solution is derived as follows:

5.4411x10% —1.7943x10° 1.6504%10°
—1.7943%x10° 7.5100x10° —6.8676%10°
1.6504x10° —6.8676x10° 7.1081x10°

Glg™)= - (40)

P (41)

Therefore, the optimal feed-back gain of (27) is given as
F=[3.3250x107 —1.3433x107" 1.2356x107'], (42)
the controller parameters are obtained, respectively, as
g=1.1236, K=12632,
H=[0.31278 —1.1229 1.2313]. (43)
At the same time, by applying to (31) for Faddeev’s
algorithm, the characteristic polynomial D,(¢”') of an
optimal servo system is calculated as follows:
Dy(q™)=1-1.8354g"" +1.1771¢ ™ —0.23389¢ "
—-6.5198x107"°¢ ™ +4.5552x107 ¢, (44)
The order nd of characteristic polynomial is equal to 5
theoretically. However, it is actually possible to process the
order of D,(¢7") as nd =3, because both coefficients of
the fourth and fifth order term in (44) are very small. If the
designer requests more closed-loop polynomial than third
order, for example, the design should be considered by
using the plant model with the virtual pole-zero pair. When
(15) is solved after the characteristic polynomial D,(g™") is

40 T T 1 T T
[sample]
30
~
A
20 F
10 -
0 1
10° 10"

Figure 5: Each settling time ST to the weight R .
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substituted to it, the pole placement controllers S(¢™") and
R(¢™") are derived, respectively, as
S(gy=1+1.1236"" +0.93477¢ 7 +0.14351g™>,  (45)

R(g™")=15.349 —29.413¢™' +19.159¢ > —3.8313¢ " . (46)
Furthermore, the stability index y,(i=1,2) and the scaling
factor y are obtained, respectively, as

y, =1.7316, vy, =1.0224 ,y=17704 . (47)
Hurwitz determinant #, is calculated as H, =1.647x10°
in order to confirm the absolute stability of S, (s) .

In addition, the gain and phase margins from the loop
transfer function are calculated and also the settling time of
only closed-loop system can be obtained. Similarly, when
the calculation is repeated changing R continuously, using
fixed Q in terms of both weights, Q and R, in the
performance criterion, each significant characteristic is
obtained. First, the index y of series compensator for the
weight R of a performance criterion of both plants *, and
2, is shown in Figure 3. Furthermore, Hurwitz determinant
H, and settling time ST to performance weight R are
shown, respectively, in Figures 4 and 5. The diagrams in
terms of the characteristic of the gain-phase margin are
omitted in this paper.

Next, the relation of both performance weight R and
stability index  having good performance for both plants
z, and X, is examined, respectively, in these Figures 3
and 4. Each range of the performance weights that meet
stability condition H, >0 is estimated in Figure 4 as

10°<R, , 10°<R,, (48)
where R, and R, represent the range of performance
weight regarding the plants =, and %, , respectively.
Therefore, the region of the stability index having a stable
compensator is given as 1<y in consideration of (48) with
respect to Figure 3. Furthermore, the performance weight
having the appropriate settling time for both of plants,
¥, and X, is estimated in Figure 5, respectively, as

R, =5x10* , R =5x10". (49)

At this time, the designer is able to choose the region
flexibly as a suitable area of both stability and settling time
by considering Figure 3. However, the selection of a wide
range is not appropriate for the purpose of auto-tuning. For
example, each region of the stability index corresponding
to R, and R, is appropriately selected for auto-tuning
according to the following:

, up=20
, u =18 } '

l,=15
I, =17
Thus, many degrees of freedom are given to the designer
on the occasion of a decision of /, ,u, and I, in (50).
Fuzzy inference is used to ensure the stability index y of
the series compensator within the specified region.

lysypsu, . (50)

L <y <u,

u
1

SM JF LG

JFI SMS LGI JFS Y

Figure 6: Membership function of antecedent.
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Figure 7: Membership function of consequent.

The fuzzy variable y used in the antecedent of the fuzzy
rule has a trapezoidal membership function, as shown in
Figure 6. In addition, the membership function used in the
consequent of the fuzzy rule has a triangular form, as
shown in Figure 7. The horizontal scale in the membership
function of Figure 6 can be selected as

JFI=min(y, Uy,) , SMS=min(y  Ny,),

LGI=max(y,NY,) , JFES=max(y,VY,) . 51
The complete inference is found by calculating the gravity
of (36) in terms of membership function shown in Figure7.

The transient characteristic is improved by using the
tracking model with the binomial coefficient as follows:
4,(q ) =(-aq™), B,(¢)=4,1), (52)
where o is the adjustable parameter of « <1 . The relation
of settling time and stable adjustable pole is obtained
through the step response simulation of the following
tracking specification:
c 4 AW B
T4, BO
In this example, it is evident through the previous
simulation that the tracking characteristics of both plants
¥, and =, have similar settling time, even if the plant
parameter changes greatly. By examining each relation
between the performance weight, the settling time and the
tracking model, the transient characteristic is improved by
tuning the pole o of the tracking model by the following
formula:

a(k) =alog R(k)+b, a=0.1350 , b=—-1.437x107. (54)

(53)

4 Simulation Results

The simulation result of the conventional adaptive pole
placement control having the closed-loop pole designed by
an optimal servo is shown in this section. After that the
proposed auto-tuning result of adaptive pole placement
control system is shown, even if the unstable compensator
appears on the conventional system in the case that the
plant parameter changes greatly. Finally, the transient
response is improved by tuning the tracking model
according to the weight in optimal servo design. It is
assumed that the prefilter of (8) is specified and the
reference signal of ,,(k) = u,, (k) without reference model is
used for the plant of (40). The weights of performance
index of (25) are chosen to be constant values of
Q = diag (100,100,100) and R=10°.

The plant parameter has been changed to
2,(s=04, w, =20) from ¥ (¢=0Lm,=60) ata step of
400 and a minimal disturbance noise of variance
0,” =5x107 has been added to the simulation. The result
of the adaptive pole placement control by the conventional
method is first shown in Figures 8 through 10.
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Figure 8: Controlled variable (conventionaladaptive control).
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Figure 9: Stability index y (conventional adaptive control).
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Figure 10: Actuating value (conventional adaptive control).

In Figure 9 the index 7y is very small in the area of the
parameter £, and also the compensator is unstable.
Therefore, the manipulated variable shown in Figure 10 is
greatly disturbed even for a minimal random disturbance.

Consequently, a strongly stable system is not achieved
using the conventional method even if optimal servo
system is designed to the given plant.

The simulation results obtained in the same condition
mentioned above using the proposed method are next
shown in Figures 11 through 13. The performance weight
R is adjusted appropriately and the appearance of unstable

T I T I T I T

o 4 - ————--—- Zg ——————— e
el r - N
'%2 — — — — e A A -
> = . . . -
3ot .o -
g—z L aad S A
Q

-4 ’""I'" Elf '"I""’I . | T=0.02fsec] ]

0 200 400 600 sample 800

Figure 11: Controlled variable, in case of proposed method.
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Figure 12: Weight R, in case of proposed method.
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Figure 13: Stability index y , in case of proposed method.

T=0.02[sec] |

sample

controller can be prevented even after the plant parameters
are changed greatly at a step of 400 in Figure 12.
Furthermore, Figure 13 reveals that the proposed adaptive
control system is appropriately adjusted by means of fuzzy
inference as the stability index y is put in the specified
region. An overshoot is observed in the transient response
of a controlled variable in Figure 11 a little.

When the prefilter of (9) is specified and the tracking
model of (4) is used, the transient response is finally
improved as shown in Figures 14 through 16. The control
variable is in good settling condition as shown in Figure 14
and also the overshoot disappear after the completion of
parameter identification. Table 1 shows the difference of its
characteristics when the reference model is employed. The
settling time in both simulations is nearly the same.
Simultaneously there is no disturbance in the actuating
value as shown in Figure 15. Furthermore, the stable pole
a of the tracking model is appropriately tuned as shown in
Figure 16. The performance weight and the index y are
almost similar to Figures 12 and 13.
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Figure 14: Controlled variable with tracking model.
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Figure 15: Actuating value with tracking model.
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Figure 16: Stable pole o of tracking model.
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Table 1: Characteristics of controlled variable.

Evaluation | Overshoot | Peak time | Settling time
Simulation Mp[%] tplsample] | tslsample]
Result without | X, 14.8 4 8
Tracking model | X 24.8 10 21
Result with Z/ 0 - 9
Tracking model | Zg 0 - 20

5 Conclusions

The useful design method for the auto-tuning has been
introduced to achieve a strongly stable system for the
adaptive pole placement control. The difficulty of
conventional adaptive pole placement control is how to
place the stable pole to the Diophantine equation to design
the appropriate controller according to the plant parameter
that widely changes. The proposed methods can place the
stability index in the specified area and then, overcome the
problem of unstable series compensator that appears in
conventional adaptive control system. The evident solution
for the control purpose is easily achieved by applying the
proposed scheme. Both operations of the estimation and the
control were recursively repeated in order to inspect the
real time performance; however, it does not necessarily
require that they are simultaneously performed on every
control interval in the auto-tuning of adaptive control
system. In other words, the proposed method has been able
to confirm even the sufficient applicability to practical
machine.

References

[1] K. J. Astrém and B. Wittenmark, Adaptive Control,
Addison Wesley, 1989.

[2] L. D. Landau, System Identification and Control Design,
Prentice Hall, 1990.

[3] J. C. Doyle, B. A. Francis and A. R. Tannenbaum,
Feedback Control Theory, Macmillan, 1992.

[4] P. Ratiroch-anant, W. Surakampontorn, H. Hirata, M.
Anabuki and J. Ngamwiwit, “Fuzzy Adaptive Pole
Placement Control Considering Stability Index“, /EEE
Asia-Pacific Conference on Circuits and Systems,
Chiangmai, pp.667-670, 1998.

[5] H.Hirata, P.Ratiroch-anant, V. Prijapanij, M.Anabuki &
J.Ngamwiwit, “Auto-Tuning Adaptive Control System
Using Fuzzy Inference®, I[EEE International Conference on
Systems, Man, and Cybernetics, vol. VIpp.156-161, 1999.
[6] S. Manabe, “A Solution of the ACC Benchmark
Problem by Coefficient Diagram Method*, 6" Workshop
on Astrodynamics and Flight Mechanics, Sagamihara,
pp.108-117, 1996.

[7] S. Manabe, “Coefficient Diagram Method®, / 4™ [FAC
symposium on automatic control in aerospace, Seoul,
pp.322-327, 1998.

[8] T. Mita, “Optimal Digital Feedback Control Systems
Counting Computation Time of Control Laws®, [FEE
Trans. on Automatic Control, Vol30, No6, pp.542-548,
1985.

[9] T. Terano, K. Asai & M. Sugeno, Fuzzy Systems Theory
and Its Applications, Academic Press, 1992.



	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	New Search
	Next Search Hit
	Previous Search Hit
	Search Results
	------------------------------
	No Other Papers by the Authors
	------------------------------

	headLa1: The 4th Asian Control Conference
	headLb1: September 25-27, 2002
	headLc1: Singapore
	headR1: WM3-2
	footer1: 981-04-6440-1/02/$10.00 © 2002 ASCC
	pagenumber507: 507
	footer2: 981-04-6440-1/02/$10.00 © 2002 ASCC
	pagenumber508: 508
	footer3: 981-04-6440-1/02/$10.00 © 2002 ASCC
	pagenumber509: 509
	footer4: 981-04-6440-1/02/$10.00 © 2002 ASCC
	pagenumber510: 510
	footer5: 981-04-6440-1/02/$10.00 © 2002 ASCC
	pagenumber511: 511
	footer6: 981-04-6440-1/02/$10.00 © 2002 ASCC
	pagenumber512: 512


