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Abstract

The auto-tuning method for a strongly stable adaptive 
control system design is proposed. The proposed methods 
can place the stability index in the specified area and then, 
overcome the problem of unstable series compensator that 
appears in conventional adaptive pole placement control 
system. The appropriate adaptive control system can be 
derived by adjusting automatically the weight of a
performance criterion in optimal control by means of the 
fuzzy inference on the basis of the stability index.
Furthermore, the transient characteristic is improved by 
tuning the tracking model according to certain relation
between the performance weight in an optimal control
design, the settling time and the tracking model pole. In 
addition, the numerical simulations are used to prove that 
the proposed methods provide satisfied performance.

1 Introduction

The dynamic characteristics in many industrial controlled 
systems often change in a wide range during actuation. For 
example, the mechanical parameter on the motor control 
system changes over a wide range. It is well known that the 
adaptive control [1], [2], is very effective method for such 
systems. By the way, when the system parameter changes 
widely, a controller having unstable poles frequently
appears in an adaptive pole placement control system, even 
if the closed-loop characteristic has been designed as a
stable system. However, the appearance of unstable
compensator is not desirable with respect to both stability 
and reliability. 
    The unstable controller is used seldom, especially if the 
plant itself is a stable system. Therefore, the appropriate 
selection of a closed-loop pole is required in order to obtain 
a stable controller over a full range of the parameter change. 
However, selecting the closed-loop pole that ensures the 
stability of a compensator under the condition of the
parameter change over a wide range is very difficult in the 
pole placement control. Therefore, if the designer is able to 
adjust the stable poles of a closed-loop system recursively 
according to the change of the plant parameter, the
construction of a strongly stable system [3] is easily
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ed. Such research is an indispensable significant
 to the development of an intelligent auto-tuning
logy. However, only few reports are published that 
sed the tuning method of both controller and
-loop pole according to the parameter change.
ently, authors announced some effective design
ds [4], [5], that construct a strongly stable adaptive 
lacement system when the plant parameter greatly 
es. In this paper, the desired performance of both 
nt response and manipulated variable can be
ed by tuning the tracking model in consideration of 
lation between the performance weight in optimal 
l design and the settling time. The main characteristic 

 proposed design method for strongly stable adaptive 
l system is to evaluate the control system by
ucing a stability index, the relative stability of both 
 compensator and closed-loop system. A stability

is the evaluation that was introduced in the
cient diagram method [6], [7], it is also known as a 
 index in the case that a robust controller of low 
sion is derived in the control design.
 procedure of the proposed method is summarized as 
s. An optimal servo system [8] is recursively
ed to an estimated plant model. The pole placement 
ller is automatically constructed by solving Bezout

ty on the basis of the characteristic polynomial of the 
d optimal servo. After the stability index of a series 
nsator is examined, the weight in an optimal design 

ropriately updated by means of the fuzzy inference.
other words, the proposed method automatically
s the weight of an optimal servo system so that the 
ve system can place the stability index of the series 
nsator into the specified region. Consequently, this 
d not only ensures the stability of both the closed-
ystem and the controller but also can achieve a fine 
l performance.

Adaptive Pole Placement Control System

roposed adaptive control system shown in Figure 1 
ot introduce the pole-zeros cancellation because it is 

 difficult to avoid the unstable zeros in the discrete
ling of the practical plant.



Figure 1: Block diagram of an adaptive control system.

2.1  Pole placement control system
The adaptive control system of this research is constructed
by means of the pole placement design with an integrator in 
order to reject the stationary disturbance. The plant is
described by the following ARX model:

)()()()()( 11 kwkuqBqkyqA d += −−−  , (1)
n

n qaqaqA −−− +++= L1
1

1 1)(  , (2)
m

m qbqbbqB −−− +++= L1
10

1 )(  , (3)
where )(kw  is the white noise having zero mean value. 
The reference signal is given by the following tracking 
model:

)()()()( 11 kuqBqkrqA mm
d

mm
−−− = (4)

l
mlmm qaqaqA −−− +++= L1

1
1 1)(  ,  (5)

l
mlmmm qbqbbqB −−− +++= L1

10
1 )(  . (6)

The regulation performance of a stable closed-loop system 
is specified by the following polynomial:

nd
ndo qdqdqD −−− +++= L1

1
1 1)( , dmnnd ++≤  .(7)

In addition, the tracking performance of a control system is 
generally achieved by using prefilter )( 1−qT  that is either 
the constant gain such as

)1()1()( 1 BDqT o=−                   (8)
or the polynomial such as

)1()()( 11 BqDqT o
−− =  .         (9)

Here, let us consider the difference described by 

)()()()()()( 111 dkrqBqTdkyqDdke mo +−+=+ −−− . (10)
The variance of (10) represents the performance criterion:

)]([ 2 dkeEJ +=  .                    (11)
Then, the optimal input signal u k( )  that minimizes J  is 
constructed by means of the following value:

)()1(

)()()()(
)(

11

11

−−

−−

−
−+=

qSq

kyqRdkrqT
ku m  ,      (12)

where S q( )−1  and R q( )−1  are given by the polynomials:
ns

ns qsqsqS −−− +++= L1
1

1 1)(  , 1−+= dmns  , (13)
nr

nr qrqrrqR −−− +++= L1
10

1 )(  , nnr =  .   (14)
Furthermore, S q( )−1  and R q( )−1  can be derived by solving
Bezout  identity (or eDiophantin  equation):

)()()()()1()( 111111 −−−−−−− +−= qRqBqqSqAqqD d
o . (15)
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ecursive i dentification system
 the parameter of ARX model (1) is unknown or 
y varied, the estimated value of a plant parameter is 
tuted in the control system design. If the parameter 
θ  and the regression vector ϕ ( )k  constructed by 

rement data are defined as
},,,,,,,{ mn

T bbbaaa LL 1021= (16)

),(,),2(),1({)( nkykykyk −−−−−−= L

})(,),1(),( dmkudkudku −−−−− L  , (17)
tively, then, the plant output is expressed by

)()()( kvkky T += θϕ  . (18)
, let us use the notation )|(ˆ θky  as the one-
head prediction value, then it is given by the linear 
la with respect to a parameter vectorθ  as follows:

θϕθ )()()()()](1[)| 11 kkuqBkyqAk T=+−= −−  . (19)
stimate model output is constructed according to

)(ˆ)()( kkky T
m θϕ=  , (20)

 the estimate vector of the parameter is defined by

),(,),(),({)(ˆ
21 kakakak n

T L=
)}(,),(),( 10 kbkbkb mL .             (21)

the condition of signal to noise (S/N) ratio of the plant 
bed by ARX model is good, the least-squares
tion is reliable and has few bias with respect to the 
ted value. Consequently, the recursive  identification 

 on least-squares method is described by means of the 
ing formulation:
meter adjusting:
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iori error:

)1(ˆ)()() −−= kkkyk T θϕ , (24)
 weighting sequences λ1( )k  and λ2( )k  in (23) are

1≤( )k and 0 22≤ <λ ( )k , respectively. The designer 
btain other adaptive gain that has the typical
teristic by selecting the appropriate values for λ1( )k

( )k .

haracteristic polynomial based on optimal servo
rocedure of a tuning algorithm was simplified by 
ng the binomial coefficient polynomial in [4], as the 
tion specification. Type-1 optimal servo  base on the
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e 2: Type-1 optimal servo having one sample delay.



state-space approach is adaptively updated. The state-space
description, for example, a controllable canonical form
with respect to ARX model (1) is given by Σ : ( , , )A B C

ignoring the disturbance )(kw . Type-1 servo system with 
computation time delay to the plant Σ : ( , , )A B C as shown 
in Figure 2 is constructed.

Here, a quadratic type performance criterion is defined as

∑ +=
∞

=0

2 )}(~)(~)(~{
k

T kvRkxkxJ Q  , 0>R , (25)

where ~( )x k  and ~( )v k  represent the states and actuating 
value for the extended deviation system, respectively, and 
Q is a semi-positive definite matrix. Type-1 optimal servo
having one sample controller delay that minimizes a
performance index of (25) is given as follows:

Riccati equation:
0,)( 1 >+−+= − PAPBBPBRBPAAPAP TTTTQ , (26)

Optimal feed-back gain:
APBBPBRF TT 1)( −+= ,               (27)

Controller parameters:
1+= BFg ,               (28)

12 ]1,[],[ −++= EBFBAFAFKH ,               (29)
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Furthermore, the state-space description of this optimal
servo system is expressed by
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Therefore, characteristic polynomial )( 1
0

−qD  of closed-
loop system is, for example, recursively calculated by
Faddeev’s algorithm from the system matrix of (31).

2.4 Auto-Tuning based on the stability index
The tuning method for the strongly stable pole placement 
based on the stability index is discussed. The stability index 
is introduced in order to evaluate the relative stability of the 
control system. In the following nth -order characteristic
polynomial of the continuous-time transfer function:

01)( fsfsfsp n
n +++= L  , 2≥n  , (32)

the stability indices γ i  are generally defined as follows:

11
2

−+ ⋅= iiii fffγ  , )1,,1( −= ni L .               (33)
A series compensator [ ( )]S q− −1 1  is derived by solving (15),
according to the characteristic polynomial D qo ( )−1  that is
obtained with an optimal design of the previous section. 

Next, in order to apply the stability indices γ i  to the 
discrete-time series compensator [ ( )]S q− −1 1 , it is
transformed into the continuous-time transfer function
S sc ( ) by introducing the inverse bilinear transformation

)2()2( sTsTq −+=  ,          (34)
where T  is the sampling period.
    After this operation, the stability indices γ i  in terms of 
the denominator of continuous-time compensator S sc ( )  are 
calculated. Furthermore, the simplest index γ  is selected 
by means of the algebraic product (35) of stability indices 
γ i  in order to evaluate the relation between the stability of 
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ew index γ  can be related to the performance weight 
the optimal servo. Furthermore, the index γ  is related
ch characteristic, whether open-loop, such as
hase margin, or close-loop, such as settling time.
priate auto-tuning of weight R  based on the
nt stability index γ  is achieved, by considering the 
ns as mentioned above. Namely, the fuzzy inference 
oduced to adjust the performance weight R  and this
ty index γ  is effectively used as the scaling factor.
addition, in order to complete the defuzzification of 
ference result, the consequent of fuzzy inference is 
ted using the gravity method of Mamdani as follows:

)()}({)1( jjjg xxxku µµ ∑⋅∑=− , (36)
x j  is the nonfuzzy value, µ( )x j is the value of the 

ership function, and )1( −kug  is the inference result. 
der to place the stability index γ  of the series
nsator S sc ( )  into the specified region, the weight R
erformance criterion in the optimal servo system is 
by means of the following recursive formula:

R k R k k( ) ( ) ( )= − ⋅ −1 10 1β ,  (37)

β( ) ( )k c u kg− = ⋅ −1 1 , antconstanyc: . (38)

3 Design Example

-order continuous-time plant is chosen as the
lled process according to the following:

G s
K

s d s s
n

n n

( )
( )( )

=
+ + +

ω
ςω ω

2

2 22
 , (39)

K  and d  are assigned to a constant value of 50  in 
to simplify the calculation similarly to [5]. The design 
ormed according to the procedure described below. 

ontrollers for both of the continuous-time plant pairs, 

n. , )ω =0 1 60  and Σ s n( . , )ς ω= =0 4 20 , are designed.
lant Σ f  is a typical plant that has a fast response, and 
he plant Σ s  is a typical plant, yet has a slower
se than the plant Σ f . First the plant Σ s  described 

 is transformed with a sampling time T = 0 02. [sec]
e following discrete-time system (40), because the 

l controller is designed using the discrete-time model.

e 3:  Each index γ of plants Σ f  and Σ s  to weight R .
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×++=

qqq

qqq
qG . (40)

Due to the computation time delay, d  should be increased 
by 1 , yielding d = 2 . Type-1 optimal servo controller 
having one sample controller delay is calculated under the 
condition that the weights of performance criterion of (25)
are )100,100,100(diag=Q and 4105×=R .
    When Riccati equation of (26) is first solved, a positive 
definite solution is derived as follows:



















××−×
×−××−

××−×

=
333

333

332

101081.7108676.6106504.1

108676.6105100.7107943.1

106504.1107943.1104411.5

P  .    (41)

Therefore, the optimal feed-back gain of (27) is given as
]102356.1103433.1103250.3[ 112 −−− ××−×=F  , (42)

the controller parameters are obtained, respectively, as
1236.1=g , 2632.1=K ,

]2313.11229.131278.0[ −=H . (43)
At the same time, by applying to (31) for Faddeev’s
algorithm, the characteristic polynomial D qo ( )−1  of an
optimal servo system is calculated as follows: 

3211
0 23389.01771.18354.11)( −−−− −+−= qqqqD

517416 105552.4105198.6 −−−− ×+×− qq ,      (44)
The order nd  of characteristic polynomial is equal to 5 
theoretically. However, it is actually possible to process the 
order of D qo ( )−1  as 3=nd , because both coefficients of 
the fourth and fifth order term in (44) are very small. If the 
designer requests more closed-loop polynomial than third 
order, for example, the design should be considered by 
using the plant model with the virtual pole-zero pair. When 
(15) is solved after the characteristic polynomial D qo ( )−1  is
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Figure 5: Each settling time ST  to the weight R .
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tuted to it, the pole placement controllers S q( )−1  and 
 are derived, respectively, as

3211 14351.093477.01236.11) −−− +++= qqq , (45)
3211 8313.3159.19413.29349.15) −−− −+−= qqq . (46)

rmore, the stability index γ i i( ,2)= 1  and the scaling
γ are obtained, respectively, as 

7316.11 =γ , 0224.12 =γ , 7704.1=γ  .   (47)
itz determinant H2  is calculated as 6

2 10647.1 ×=H
er to confirm the absolute stability of S sc ( ) .
addition, the gain and phase margins from the loop 
er function are calculated and also the settling time of 
losed-loop system can be obtained. Similarly, when 
lculation is repeated changing R  continuously, using 
Q  in terms of both weights, Q  and R , in the 
mance criterion, each significant characteristic is
ed. First, the index γ  of series compensator for the 
t R  of a performance criterion of both plants Σ f  and 
shown in Figure 3. Furthermore, Hurwitz determinant
d settling time ST to performance weight R are
, respectively, in Figures 4 and 5. The diagrams in 
of the characteristic of the gain-phase margin are
d in this paper.
xt, the relation of both performance weight R  and 
ty index γ  having good performance for both plants
d Σ s  is examined, respectively, in these Figures 3 
. Each range of the performance weights that meet 
ty condition H2 0>  is estimated in Figure 4 as 

≤210 fR , sR≤410  , (48)
Rf  and Rs  represent the range of performance

t regarding the plants Σ f and Σ s , respectively.
fore, the region of the stability index having a stable 
nsator is given as 1< γ  in consideration of (48) with 
t to Figure 3. Furthermore, the performance weight 

the appropriate settling time for both of plants,
d Σ s  is estimated in Figure 5, respectively, as
R f

2105×≅ , Rs
4105×≅  . (49)

 this time, the designer is able to choose the region
ly as a suitable area of both stability and settling time 
sidering Figure 3. However, the selection of a wide 

 is not appropriate for the purpose of auto-tuning. For 
le, each region of the stability index corresponding 
 and Rs  is appropriately selected for auto-tuning

ding to the following:
l u l u

l u l u

f f f f f

s s s s s

≤ ≤ = =

≤ ≤ = =





γ
γ

, . , .

, . , .

15 2 0

17 18
 .  (50)

, many degrees of freedom are given to the designer 
 occasion of a decision of l f , uf  and ls , us  in (50).
 inference is used to ensure the stability index γ  of 
ries compensator within the specified region.
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igure 6:  Membership function of antecedent.
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Figure 7:  Membership function of consequent.

The fuzzy variable γ  used in the antecedent of the fuzzy 
rule has a trapezoidal membership function, as shown in 
Figure 6. In addition, the membership function used in the 
consequent of the fuzzy rule has a triangular form, as 
shown in Figure 7. The horizontal scale in the membership 
function of Figure 6 can be selected as

JFI f s= ∪min( )γ γ  , SMS f s= ∩min( )γ γ ,

LGI f s= ∩max( )γ γ  , JFS f s= ∪max( )γ γ  .            (51)
The complete inference is found by calculating the gravity
of (36) in terms of membership function shown in Figure 7.
    The transient characteristic is improved by using the 
tracking model with the binomial coefficient as follows:

311 )1()( −− −= qqAm α , )1()( 1
mm AqB =− , (52)

where α  is the adjustable parameter of 1<α . The relation 
of settling time and stable adjustable pole is obtained
through the step response simulation of the following
tracking specification:

)1(
)(

)(

)1( 1

1

2

B

qB

qA

Aq
G

m

m
tr

−

−

−

⋅= .                    (53)

In this example, it is evident through the previous
simulation that the tracking characteristics of both plants 
Σ f and Σ s  have similar settling time, even if the plant 
parameter changes greatly. By examining each relation
between the performance weight, the settling time and the 
tracking model, the transient characteristic is improved by 
tuning the pole α  of the tracking model by the following
formula:

bkRak += )(log)(α , 1350.0=a , 210437.1 −×−=b .   (54)

4 Simulation Results

The simulation result of the conventional adaptive pole 
placement control having the closed-loop pole designed by 
an optimal servo is shown in this section. After that the 
proposed auto-tuning result of adaptive pole placement 
control system is shown, even if the unstable compensator 
appears on the conventional system in the case that the
plant parameter changes greatly. Finally, the transient
response is improved by tuning the tracking model
according to the weight in optimal servo design. It is
assumed that the prefilter of (8) is specified and the
reference signal of r k u km m( ) ( )=  without reference model is 
used for the plant of (40). The weights of performance 
index of (25) are chosen to be constant values of

diag=Q (100,100,100) and R =103 .
The plant parameter has been changed to

,4.0( =Σ ςs )20=nω  from )60,1.0( ==Σ nf ως  at a step of 
400 and a minimal disturbance noise of variance

62 105 −×=nσ has been added to the simulation. The result 
of the adaptive pole placement control by the conventional 
method is first shown in Figures 8 through 10.
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e 8: Controlled variable (conventional adaptive control).

re 9: Stability index γ (conventional adaptive control).
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re 10: Actuating value (conventional adaptive control).

ure 9 the index γ is very small in the area of the 
eter sΣ  and also the compensator is unstable.
fore, the manipulated variable shown in Figure 10 is 
y disturbed even for a minimal random disturbance.
quently, a strongly stable system is not achieved 
the conventional method even if optimal servo
 is designed to the given plant. 

e simulation results obtained in the same condition 
oned above using the proposed method are next
 in Figures 11 through 13. The performance weight
djusted appropriately and the appearance of unstable
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re 11: Controlled variable, in case of proposed method.
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Figure 13:  Stability index γ , in case of proposed method.

controller can be prevented even after the plant parameters 
are changed greatly at a step of 400 in Figure 12.
Furthermore, Figure 13 reveals that the proposed adaptive 
control system is appropriately adjusted by means of fuzzy 
inference as the stability index γ  is put in the specified
region. An overshoot is observed in the transient response 
of a controlled variable in Figure 11 a little. 
    When the prefilter of (9) is specified and the tracking 
model of (4) is used, the transient response is finally
improved as shown in Figures 14 through 16. The control 
variable is in good settling condition as shown in Figure 14 
and also the overshoot disappear after the completion of 
parameter identification. Table 1 shows the difference of its 
characteristics when the reference model is employed. The 
settling time in both simulations is nearly the same.
Simultaneously there is no disturbance in the actuating 
value as shown in Figure 15. Furthermore, the stable pole 
α  of the tracking model is appropriately tuned as shown in 
Figure 16. The performance weight and the index γ  are 
almost similar to Figures 12 and 13.
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Figure 14: Controlled variable with tracking model.
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Figure 15: Actuating value with tracking model.
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Figure 16:  Stable pole α  of tracking model.
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5 Conclusions

seful design method for the auto-tuning has been
uced to achieve a strongly stable system for the
ve pole placement control. The difficulty of
ntional adaptive pole placement control is how to 
the stable pole to the Diophantine equation to design 
propriate controller according to the plant parameter 
idely changes. The proposed methods can place the 
ty index in the specified area and then, overcome the 
m of unstable series compensator that appears in
ntional adaptive control system. The evident solution 
e control purpose is easily achieved by applying the 
sed scheme. Both operations of the estimation and the 
l were recursively repeated in order to inspect the 
me performance; however, it does not necessarily 
e that they are simultaneously performed on every 
l interval in the auto-tuning of adaptive control
. In other words, the proposed method has been able 
firm even the sufficient applicability to practical 
ne.
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